
OOP concepts

Agenda

• Programming

• Procedural programming

• Object oriented programming.

• Features of OOP

• OOP concepts

• Object oriented programming design
principles

Programming

• Programming is the craft of transforming
requirements into something that computer
can execute.

Procedural programming

• Programmer implements requirement by
breaking down them to small steps (functional
decomposition).

• Programmer creates the “recipe” that
computer can understand and execute.

Procedural programming …..

• What’s wrong with procedural programming
language?

• When requirements change

– It hard to implement new feature that were not
planned in the beginning.

– Code blocks gets bigger and bigger.

– Changes in code introduce many bugs.

– Code gets hard to maintain.

Worst thing is that

Requirement
always change

Object oriented programming

• Break down requirements into objects with
responsibilities, not into functional steps.

• Embraces change of requirements.

– By minimizing changes in code.

• Let you think about object hierarchies and
interactions instead of program control flow.

• A completely different programming
paradigm.

Why OOPS?

• To modularize software development, just like
any other engineering discipline.

• To make software projects more manageable and
predictable.

• For better maintainability, since software
maintenance costs were more than the
development costs.

• For more re-use code and prevent ‘reinvention of
wheel’** every time.

**reinventing the wheel is a phrase that means to duplicate a basic method that has
already previously been created or optimized by others

Features of OOP

• Emphasis on data rather on procedure.

• Programs are divided into what are known as
“objects”.

• Functions that operate on data of an object
are tied together in a data structure.

• Object may communicate with each other
through functions.

• New data and functions can be added easily
whenever necessary.

OOPS Concepts

• Classes and Objects
• Message and Methods
• Encapsulation
• Association, Aggregation and Composition
• Inheritance
• Polymorphism
• Abstraction
• Modularity
• Coupling
• Cohesion
• Interfaces, Implementation?

Classes and Objects

• Object oriented programming uses objects.

• An object is a thing, both tangible and
intangible. Account, Vehicle, Employee etc.

• To create an object inside a compute program
we must provide a definition for objects –
how they behave and what kinds of
information they maintain – called a class.

• An object is called an instance of a class.

• Object interacts with each other via message.

Message and Methods

• To instruct a class or an object to perform a task,
we send message to it.

• You can send message only to classes and objects
that understand the message you sent to them.

• A class or an object must posses a matching
method to be handle the received message.

• A method defined for a class is called class
method, and a method defined for an object is
called an instance method.

• A value we pass to an object when sending a
message is called an argument of the message.

Message Passing

• The process by which an object:

– Sends data to other objects

– Asks the other object to invoke the method.

• In other words, object talks to each other via
messages.

Encapsulation

• Encapsulation is the integration of data and
operations into a class.

• Encapsulation is hiding the functional details
from the object calling it.

• Can you drive the car?
– Yes, I can!

• So, how does acceleration work?
– Huh?

• Details encapsulated (hidden) from the driver.

Association, Aggregation and
Composition

• Association → Whenever two object are related with each
other the relationship is called association between objects.

• Aggregation → Aggregation is specialized form
of association. In aggregation objects have their own life-
cycle but there is ownership and child object can not belongs
to another parent object. But this is only an ownership not
the life-cycle control of child control through parent object.
Ex: Student and teacher, Person and address etc.

• Composition → Composition is again specialize form
of aggregation and we can call this as a “life and death”
relationship. It is a strong type of aggregation. Child object
dose not have their life-cycle and if parent object deletes all
child object will also be deleted. Ex: House and room

Inheritance

• Inheritance is a mechanism in OOP to design
two or more entities that are different but
share many common features.

– Feature common to all classes are defined in the
superclass.

– The classes that inherit common features from
the superclass are called subclasses.

Inheritance Example

Why inheritance?

• Classes often share capabilities.

• We want to avoid re-coding these capabilities.

• Reuse of these would be best to

– Improve maintainability

– Reduce cost

– Improve “real world” modeling.

Why Inheritance? Benefits

• No need to re-invent the wheel.

• Allow us to build on existing codes without
having to copy it, paste it or rewrite it again,
etc.

• To create the subclass, we need to program
only the differences between the superclass
and subclass that inherits from it.

• Make class more flexible.

Composition(has-a)/Inheritance(is-a)

• Prefer composition when not sure about inheritance.
• Prefer composition when not all the superclass functions

were re-used by subclass.
• Inheritance leads to tight coupling b/w subclass with

superclass. Harder to maintain.
• Inheritance hides some of compilation error which must be

exposed.
• Inheritance is easier to use than composition.
• Composition make the code maintainable in future,

especially when your assumption breaks (Using
inheritance).

• Discussion is incomplete without discussion of Liskov
substitution principle.

Composition/Inheritance…..

• Idea is to think twice while making decision.

• One has to have proper reason while choosing
composition/inheritance.

• A car has “engine”.

• A car is a “vechicle”.

• Discussion?

Polymorphism

• Polymorphism indicates the meaning of “many
forms”.

• Polymorphism presents a method that can have
many definitions. Polymorphism is related to
“overloading” and “overriding”.

• Overloading indicates a method can have
different definitions by defining different type of
parameters.
– getPrice() : void

– getPrice(string name) : void

Polymorphism….

• Overriding indicates subclass and the parent
class has the same methods, parameters and
return type(namely to redefine the methods
in parent class).

Abstraction

• Abstraction is the process of modeling only
relevant features

– Hide unnecessary details which are irrelevant for
current purpose (and/or user).

• Reduces complexity and aids understanding.

• Abstraction provides the freedom to defer
implementation decisions by avoiding
commitments to details.

Abstraction example

#include <iostream>
using namespace std;
class Adder{
public:

// constructor
Adder(int i = 0)
{

total = i;
}
// interface to outside world
void addNum(int number)
{

total += number;
}
// interface to outside world
int getTotal()
{

return total;
};

private:
// hidden data from outside world
int total;

};

int main()
{

Adder a;

a.addNum(10);
a.addNum(20);
a.addNum(30);

cout << "Total " << a.getTotal()
<<endl;

return 0;
}

Modularity

• The modularity means that the logical
components of a large program can each be
implemented separately. Different people can
work on different classes. Each
implementation task is isolated from the
others.

• This has benefits, not just for organizing the
implementation, but for fixing problems later.

Coupling

• Coupling defines how dependent one object
on another object (that is uses).

• Coupling is a measure of strength of
connection between any two system
components. The more any one components
knows about other components, the
tighter(worse) the coupling is between those
components.

Tight coupling

class Traveler
{

Car c=new Car();
void startJourney()
{

c.move();
}

}

class Car
{

void move()
{

// logic...
}

}

Loose coupling

class Traveler
{

Vehicle v;
public void setV(Vehicle v)
{
this.v = v;

}

void startJourney()
{

v.move();
}

}

Interface Vehicle
{

void move();
}

class Car implements Vehicle
{

public void move()
{

// logic
}

}

class Bike implements Vehicle
{

public void move()
{

// logic
}

}

Cohesion

• Cohesion defines how narrowly defined an object
is. Functional cohesion refers measures how
strongly objects are related.

• Cohesion is a measure of how logically related
the parts of an individual components are to each
other, and to the overall components. The more
logically related the parts of components are to
each other higher (better) the cohesion of that
component.

• Low coupling and tight cohesion is good object
oriented design (OOD).

Interface

• An interface is a contract consisting of group
of related function prototypes whose usage is
defined but whose implementation is not:

– An interface definition specifies the interface’s
member functions, called methods, their return
types, the number and types of parameters and
what they must do.

– These is no implementation associated with an
interface.

Interface Example

class shape
{

public:
virtual ~shape();
virtual void move_x(distance x) = 0;
virtual void move_y(distance y) = 0;
virtual void rotate(angle rotation) =

0;
//...

};

Interface implementation

• An interface implementation is the code a
programmer supplies to carry out the actions
specified in an interface definition.

Implementation Example

class line : public shape
{
public:

virtual ~line();
virtual void move_x(distance x);
virtual void move_y(distance y);
virtual void rotate(angle rotation);

private:
point end_point_1, end_point_2;

//...
};

Interface vs. Implementation

• Only the services the end user needs are
represented.
– Data hiding with use of encapsulation

• Change in the class implementation should not
require change in the class user’s code.
– Interface is still the same

• Always provide the minimal interface.
• Use abstract thinking in designing interfaces

– No unnecessary steps
– Implement the steps in the class implementation

How to determine minimum possible
interface?

• Only what user absolutely needs

– Fewer interfaces are possible

– Use polymorphism

• Starts with hiding everything (private)

– Only use public interfaces (try not to use public
attributes, instead get/set).

• Design your class from users perspective and
what they need (meet the requirements)

Object oriented programming design
principles

• Principles of class design:
– Single responsibility principle (SRP)
– Open close principle (OCP)
– Liskov substitution principle (LSP)
– Dependency inversion principle (DIP)
– Interface segregation principle (ISP)

• Principles of package cohesion
– Reuse release equivalence principle (REP)
– Common closure principle (CCP)
– Common reuse principle (CRP)

• Principles of package coupling
– Acyclic dependency principle (ADP)
– Stable dependencies principle (SDP)
– Stable abstractions principle (SAP)

Single responsibility principle

• Each responsibility should be a separate class,
because each responsibility is an axis of
change.

• A class have one and only one reason to
change.

Open close principle

• Software entities (classes, modules, functions, etc.)
should be open for extension, but closed for
modification.

• In other words, (in an ideal world...) you should never
need to change existing code or classes: All new
functionality can be added by adding new subclasses
or methods, or by reusing existing code through
delegation.

• This prevents you from introducing new bugs in
existing code. If you never change it, you can't break it.

• Ex. Draw shapes etc.

Open close principle …..

• When a single change to a program results in a
cascade of changes to dependent modules, that
program exhibits the undesirable attributes that
we have come to associate with “bad” design.
The program becomes fragile, rigid,
unpredictable and un-reusable. The open-closed
principle attacks this in a very straightforward
way. It says that you should design modules that
never change. When requirements change, you
extend the behavior of such modules by adding
new code, not by changing old code that already
works.

OCP Example

//
// These functions are implemented elsewhere
//
void DrawSquare(struct Square*)
void DrawCircle(struct Circle*);
typedef struct Shape *ShapePointer;
void DrawAllShapes(ShapePointer list[], int n)
{

int i;
for (i=0; i<n; i++)
{

struct Shape* s = list[i];
switch (s->itsType)

{
case square:

DrawSquare((struct Square*)s);
break;

case circle:
DrawCircle((struct Circle*)s);

break;
}

}
}

OOD solution to Square/Circle problem.

class Shape
{
public:
virtual void Draw() const = 0;
};
class Square : public Shape
{
public:
virtual void Draw() const;
};
class Circle : public Shape
{
public:
virtual void Draw() const;
};
void DrawAllShapes(Set<Shape*>& list)
{
for (Iterator<Shape*>i(list); i; i++)
(*i)->Draw();
}

Procedural solution for
square/circle problem

enum ShapeType {circle, square};
struct Shape
{

ShapeType itsType;
};
struct Circle
{

ShapeType itsType;
double itsRadius;
Point itsCenter;

};
struct Square
{

ShapeType itsType;
double itsSide;
Point itsTopLeft;

};

Liskov substitution principle

• Functions that use pointers or references to base
classes must be able to use objects of derived
classes without knowing it.

• What is wanted here is something like the
following substitution property: If for each object
o1 of type S there is an object o2 of type T such
that for all programs P defined in terms of T, the
behavior of P is unchanged when o1 is
substituted for o2 then S is a subtype of T.

• Ex. Rectangle and Square etc.

LSP Example

• Rectangle and Square (Violation of LSP).

class Rectangle
{
public:
virtual void SetWidth(double w)
{

itsWidth=w;
}
virtual void SetHeight(double h)
{

itsHeight=h;
}
double GetHeight() const
{

return itsHeight;
}
double GetWidth() const {

return itsWidth;
}
private:

double itsHeight;
double itsWidth;

};

class Square : public Rectangle
{
public:

virtual void SetWidth(double w);
virtual void SetHeight(double h);

};
void Square::SetWidth(double w)
{

Rectangle::SetWidth(w);
Rectangle::SetHeight(w);

}
void Square::SetHeight(double h)
{

Rectangle::SetHeight(h);
Rectangle::SetWidth(h);

}
void g(Rectangle& r)
{

r.SetWidth(5);
r.SetHeight(4);
assert(r.GetWidth() *

r.GetHeight()) == 20);
}

Dependency inversion principle

• High level modules should not depend upon
low level modules. Both should depend upon
abstractions.

• Abstractions should not depend upon details.
Details should depend upon abstractions.

• What is bad design?
– Rigid (Hard to change due to dependencies.

Especially since dependencies are transitive.)
– fragil (Changes cause unexpected bugs.)
– immobile (Difficult to reuse due to implicit

dependence on current application code.)

DIP Example

The OO Copy Program

class Reader
{
public:

virtual int Read() = 0;
};
class Writer
{
public:

virtual void Write(char) = 0;
};
void Copy(Reader& r, Writer& w)
{

int c;
while((c=r.Read()) != EOF)

w.Write(c);
}

Copy Program

void Copy()
{

int c;
while ((c =

ReadKeyboard()) != EOF)
WritePrinter(c);

}

Enhanced Copy program

void Copy(outputDevice dev)
{

int c;
while ((c = ReadKeyboard())

!= EOF)
if (dev == printer)

WritePrinter(c);
else

WriteDisk(c);
}

Interface segregation principle

• Client should not forced to depend on
methods that they do not use.

• The ISP says that once an interface has
become too 'fat‘ it needs to be split into
smaller and more specific interfaces so that
any clients of the interface will only know
about the methods that pertain to them

ISP Example
class Door
{
public:

virtual void Lock() = 0;
virtual void Unlock() = 0;
virtual bool IsDoorOpen()

= 0;
};

class Timer
{
public:

void Regsiter(int timeout,
TimerClient* client);

};
class TimerClient
{
public:

virtual void TimeOut() = 0;
};

Timer client

Door

Timed Door

ISP Violation

Door
(Abstract)

Timer client
(Abstract)

Timed Door DoorTimeAdapter

Solution

References

• For more principles visit
http://c2.com/cgi/wiki?PrinciplesOfObjectOri
entedDesign

http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign

Questions?

Thanks!!!
Happy Learning!!!

